# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 3-(4-Hydroxyphenyl)-7-methoxychroman-4-one monohydrate

#### Zhu-Ping Xiao,\* Zhu-Yun Peng, Qun Luo, Ying Wu and **Ye-Ling Yang**

The Key Laboratory of Ecotourism Application Technology of Hunan Province and College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China

Correspondence e-mail: xiaozhuping2005@163.com

Received 27 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.138; data-to-parameter ratio = 15.6.

In the title compound,  $C_{16}H_{14}O_4 \cdot H_2O$ , the dihedral angle betwen the benzene rings is  $71.4 (6)^{\circ}$ . The pyran ring is in a sofa conformation. In the crystal,  $O-H \cdots O$  hydrogen bonds connect the components into a two-dimensional network parallel to (010), incorporating  $C_2^2(4)$  and  $C_2^2(11)$  chains. In addition, weak C-H···O, C-H··· $\pi$  and  $\pi$ - $\pi$  stacking interactions [centroid–centroid distance = 3.768(2)Å] are present.

#### **Related literature**

For background to and the biological activity of flavonoids, see: Xiao et al. (2007, 2010, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).



#### **Experimental**

#### Crystal data

 $C_{16}H_{14}O_4 \cdot H_2O$  $M_r = 288.29$ Monoclinic,  $P2_1/c$ a = 9.730 (3) Å b = 17.977 (5) Å c = 8.570 (2) Å  $\beta = 106.194(2)^{\circ}$ 

V = 1439.6 (6) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.10 \text{ mm}^-$ T = 296 K $0.30\,\times\,0.20\,\times\,0.20$  mm

#### Data collection

```
Bruker SMART APEX CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.971, T_{\max} = 0.981
```

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.051$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.138$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 3113 reflections                | $\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$    |
| 200 parameters                  | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C4-C9 and C10-C15 rings, respectively.

11487 measured reflections

 $R_{\rm int} = 0.031$ 

3113 independent reflections

2019 reflections with  $I > 2\sigma(I)$ 

| $\Omega_{4}$ H4 $\Omega_{5}$ 0.82 1.78 2.585 (2)     | 167                              |
|------------------------------------------------------|----------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 163 (3)<br>168 (4)<br>152<br>151 |

Symmetry codes: (i) x + 1, y, z; (ii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (iii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (iv)  $-x, y + \frac{5}{2}, -z + \frac{1}{2}; (v) x - 1, y, z.$ 

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The work was financed by a project supported by Hunan Provincial Natural Science Foundation of China (grant No. 11JJ3113) and the Key Laboratory of Ecotourism Application Technology, Hunan Province (grant No. JDSTLY01103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5364).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xiao, Z.-P., Ma, T.-W., Fu, W.-C., Peng, X.-C., Zhang, A.-H. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 5064-5070.

Xiao, Z.-P., Peng, Z.-Y., Peng, M.-J., Yan, W.-B., Ouyang, Y.-Z. & Zhu, H.-L. (2011). Mini-rev. Med. Chem. 11, 169-177.

Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem. 15, 4212-4219.

supplementary materials

Acta Cryst. (2011). E67, o3212 [doi:10.1107/S1600536811046034]

## 3-(4-Hydroxyphenyl)-7-methoxychroman-4-one monohydrate

# Z.-P. Xiao, Z.-Y. Peng, Q. Luo, Y. Wu and Y.-L. Yang

#### Comment

Flavonoids are a large group of phenolic plant constituents. Approximately 9000 different flavonoids from different plant sources have been described so far, and each year, hundreds of newly identified flavonoids are being recorded in the literature (Xiao, *et al.*, 2011). Extensive epidemiological studies and *in vitro* experiments with polyphenols have indicate their broad variety of biological activities, including anticancer, anti-inflammatory, antibacterial, cardioprotective and enzymeinhibitory activities (Xiao, *et al.*, 2007,2010).

The title compound crystallizes as a hydrate (Fig. 1). The C4-C9 ring forms a dihedral angle of 71.4 (6)  $^{\circ}$  with the C10-C15 ring. In the pyran ring, atoms C2-C4/C9/O1 are essentially planar with a mean deviation of 0.0115 Å and C1 is 0.535 (2) Å from the plane of these atoms.

In the crystal, O—H···O hydrogen bonds connect the components into a two-dimensional network parallel to (010) incorparating  $C_2^2(4)$  and  $C_2^2(11)$  chains. In addition, weak C—H···O, C—H··· $\pi$ (ring) interactions and  $\pi$ - $\pi$  stacking interactions with a centroid to centroid distance of 3.768 (2) Å are present.

#### **Experimental**

3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one (268 mg, 1 mmol) was dissolved in ethanol (10 ml). After 15 mg of 10% Pd/C was added under H<sub>2</sub> atmosphere, the resulting mixture was stirred at room temperature for 6 h. After the catalyst was filtered off, the solvent was removed under reduced pressure. The residue was dissolved in ethanol (5 ml) and equal volume of water was then added. The crystals suitable for single crystal structure determination grown at room temperature by slow evaporation of a solution of the title compound in an ethanol and water mixture.

#### Refinement

The H atoms bonded to O5 were located in difference Fourier maps and refined independently. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms, 0.97 Å for CH<sub>2</sub>, 0.98 Å for CH and 0.82 Å for the phenolic OH group.  $U_{iso}(H)$  values were set at 1.2 times  $U_{eq}(C)$  for aromatic C, the CH<sub>2</sub> group and the CH group respectively, and 1.5 times  $U_{eq}(O)$  or  $U_{eq}(C)$  for phenolic OH group and the CH<sub>3</sub> group.

#### Figures



Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.



Fig. 2. Part of the crystal structure with hydrogen bonds and other weak interactions shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

## 3-(4-Hydroxyphenyl)-7-methoxychroman-4-one monohydrate

## Crystal data

| $C_{16}H_{14}O_4$ · $H_2O$      | F(000) = 608                                          |
|---------------------------------|-------------------------------------------------------|
| $M_r = 288.29$                  | $D_{\rm x} = 1.330 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/c$            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 2114 reflections                 |
| a = 9.730 (3)  Å                | $\theta = 2.7 - 26.4^{\circ}$                         |
| b = 17.977 (5) Å                | $\mu = 0.10 \text{ mm}^{-1}$                          |
| c = 8.570 (2)  Å                | T = 296  K                                            |
| $\beta = 106.194 \ (2)^{\circ}$ | Block, colorless                                      |
| V = 1439.6 (6) Å <sup>3</sup>   | $0.30\times0.20\times0.20\ mm$                        |
| Z = 4                           |                                                       |

## Data collection

| Bruker SMART APEX CCD<br>diffractometer                                 | 3113 independent reflections                                              |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                | 2019 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                                | $R_{\rm int} = 0.031$                                                     |
| $\varphi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996) | $h = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.971, \ T_{\max} = 0.981$                                  | $k = -22 \rightarrow 22$                                                  |
| 11487 measured reflections                                              | $l = -10 \rightarrow 10$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods         |
|---------------------------------|------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                   |
| $R[F^2 > 2\sigma(F^2)] = 0.051$ | Hydrogen site location: inferred from neighbouring sites               |
| $wR(F^2) = 0.138$               | H atoms treated by a mixture of independent and constrained refinement |
| <i>S</i> = 1.04                 | $w = 1/[\sigma^2(F_0^2) + (0.0538P)^2 + 0.3767P]$                      |

|                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
|------------------|------------------------------------------------------------|
| 3113 reflections | $(\Delta/\sigma)_{max} < 0.001$                            |
| 200 parameters   | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$        |
| 0 restraints     | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|------------|---------------------------|
| C1   | 0.2951 (2)   | 1.04367 (12) | 0.2561 (3) | 0.0630 (6)                |
| H1A  | 0.3289       | 1.0311       | 0.3705     | 0.076*                    |
| H1B  | 0.3722       | 1.0691       | 0.2267     | 0.076*                    |
| C2   | 0.2612 (2)   | 0.97338 (12) | 0.1596 (3) | 0.0559 (5)                |
| H2   | 0.2348       | 0.9874       | 0.0445     | 0.067*                    |
| C3   | 0.1304 (2)   | 0.93648 (12) | 0.1916 (3) | 0.0541 (5)                |
| C4   | 0.03218 (19) | 0.98545 (10) | 0.2438 (2) | 0.0454 (5)                |
| C5   | -0.0930 (2)  | 0.95830 (11) | 0.2750 (2) | 0.0515 (5)                |
| Н5   | -0.1103      | 0.9074       | 0.2698     | 0.062*                    |
| C6   | -0.1897 (2)  | 1.00472 (11) | 0.3125 (3) | 0.0529 (5)                |
| Н6   | -0.2720      | 0.9855       | 0.3325     | 0.064*                    |
| C7   | -0.1647 (2)  | 1.08125 (12) | 0.3209 (2) | 0.0506 (5)                |
| C8   | -0.0416 (2)  | 1.11027 (11) | 0.2938 (3) | 0.0540 (5)                |
| H8   | -0.0246      | 1.1612       | 0.3000     | 0.065*                    |
| C9   | 0.0559 (2)   | 1.06186 (11) | 0.2570 (2) | 0.0482 (5)                |
| C10  | 0.3882 (2)   | 0.92093 (11) | 0.1881 (3) | 0.0499 (5)                |
| C11  | 0.4480 (2)   | 0.90321 (12) | 0.0668 (3) | 0.0569 (5)                |
| H11  | 0.4123       | 0.9252       | -0.0347    | 0.068*                    |
| C12  | 0.5599 (2)   | 0.85359 (12) | 0.0907 (3) | 0.0568 (5)                |
| H12  | 0.5982       | 0.8421       | 0.0056     | 0.068*                    |
| C13  | 0.6149 (2)   | 0.82111 (11) | 0.2404 (3) | 0.0523 (5)                |
| C14  | 0.5584 (2)   | 0.83907 (12) | 0.3660 (3) | 0.0587 (6)                |
| H14  | 0.5963       | 0.8181       | 0.4681     | 0.070*                    |
| C15  | 0.4451 (2)   | 0.88844 (12) | 0.3398 (3) | 0.0577 (6)                |
| H15  | 0.4066       | 0.9000       | 0.4246     | 0.069*                    |
| C16  | -0.2487 (3)  | 1.20180 (15) | 0.3705 (4) | 0.0983 (10)               |
| H16A | -0.1630      | 1.2133       | 0.4545     | 0.147*                    |
| H16B | -0.3294      | 1.2240       | 0.3962     | 0.147*                    |
|      |              |              |            |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H16C | -0.2411       | 1.2211       | 0.2688     | 0.147*      |
|------|---------------|--------------|------------|-------------|
| H5A  | 0.949 (3)     | 0.8105 (17)  | 0.083 (3)  | 0.093 (9)*  |
| H5B  | 0.832 (4)     | 0.764 (2)    | -0.042 (6) | 0.162 (16)* |
| 01   | 0.17584 (15)  | 1.09344 (8)  | 0.2323 (2) | 0.0641 (4)  |
| 02   | 0.10853 (16)  | 0.87006 (9)  | 0.1665 (2) | 0.0805 (6)  |
| 03   | -0.26743 (16) | 1.12282 (8)  | 0.3586 (2) | 0.0687 (5)  |
| O4   | 0.72298 (18)  | 0.76992 (10) | 0.2689 (2) | 0.0773 (5)  |
| H4   | 0.7609        | 0.7711       | 0.1946     | 0.116*      |
| 05   | 0.8803 (2)    | 0.77481 (10) | 0.0708 (3) | 0.0741 (5)  |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C1  | 0.0498 (12) | 0.0499 (12) | 0.0940 (18) | -0.0034 (10) | 0.0277 (12) | -0.0004 (11) |
| C2  | 0.0477 (11) | 0.0605 (13) | 0.0574 (13) | 0.0027 (10)  | 0.0113 (10) | 0.0015 (10)  |
| C3  | 0.0419 (11) | 0.0472 (12) | 0.0660 (14) | -0.0005 (9)  | 0.0032 (10) | -0.0042 (10) |
| C4  | 0.0413 (10) | 0.0439 (11) | 0.0468 (11) | -0.0009 (8)  | 0.0053 (9)  | 0.0008 (8)   |
| C5  | 0.0479 (11) | 0.0453 (11) | 0.0573 (13) | -0.0062 (9)  | 0.0080 (10) | -0.0004 (9)  |
| C6  | 0.0494 (11) | 0.0544 (12) | 0.0562 (13) | -0.0063 (9)  | 0.0166 (10) | 0.0014 (10)  |
| C7  | 0.0499 (11) | 0.0540 (12) | 0.0492 (12) | 0.0061 (9)   | 0.0160 (9)  | 0.0016 (9)   |
| C8  | 0.0583 (12) | 0.0409 (11) | 0.0648 (14) | 0.0025 (9)   | 0.0206 (11) | 0.0047 (9)   |
| C9  | 0.0451 (11) | 0.0453 (11) | 0.0539 (12) | -0.0021 (9)  | 0.0133 (9)  | 0.0054 (9)   |
| C10 | 0.0406 (10) | 0.0476 (11) | 0.0582 (13) | -0.0005 (9)  | 0.0083 (9)  | 0.0035 (10)  |
| C11 | 0.0540 (12) | 0.0622 (14) | 0.0508 (13) | 0.0036 (10)  | 0.0086 (10) | 0.0074 (10)  |
| C12 | 0.0581 (13) | 0.0614 (13) | 0.0520 (13) | 0.0040 (10)  | 0.0170 (10) | 0.0025 (10)  |
| C13 | 0.0458 (11) | 0.0469 (11) | 0.0625 (14) | 0.0035 (9)   | 0.0123 (10) | 0.0042 (10)  |
| C14 | 0.0630 (13) | 0.0591 (13) | 0.0521 (13) | 0.0042 (11)  | 0.0128 (11) | 0.0113 (10)  |
| C15 | 0.0571 (12) | 0.0606 (13) | 0.0607 (14) | 0.0006 (10)  | 0.0252 (11) | -0.0004 (11) |
| C16 | 0.102 (2)   | 0.0595 (16) | 0.152 (3)   | 0.0176 (15)  | 0.067 (2)   | -0.0024 (17) |
| 01  | 0.0566 (9)  | 0.0436 (8)  | 0.0990 (12) | -0.0018 (7)  | 0.0331 (8)  | 0.0061 (8)   |
| O2  | 0.0518 (9)  | 0.0526 (10) | 0.1353 (16) | -0.0072 (7)  | 0.0228 (10) | -0.0261 (10) |
| O3  | 0.0678 (10) | 0.0585 (10) | 0.0898 (12) | 0.0046 (8)   | 0.0385 (9)  | -0.0030 (8)  |
| O4  | 0.0805 (11) | 0.0754 (11) | 0.0794 (12) | 0.0351 (9)   | 0.0278 (9)  | 0.0175 (9)   |
| O5  | 0.0637 (11) | 0.0722 (12) | 0.0863 (14) | -0.0155 (9)  | 0.0206 (10) | -0.0140 (10) |

# Geometric parameters (Å, °)

| C1—O1  | 1.434 (2) | C9—O1   | 1.367 (2) |
|--------|-----------|---------|-----------|
| C1—C2  | 1.496 (3) | C10-C11 | 1.363 (3) |
| C1—H1A | 0.9700    | C10—C15 | 1.392 (3) |
| C1—H1B | 0.9700    | C11—C12 | 1.378 (3) |
| C2-C10 | 1.519 (3) | C11—H11 | 0.9300    |
| C2—C3  | 1.527 (3) | C12—C13 | 1.375 (3) |
| С2—Н2  | 0.9800    | C12—H12 | 0.9300    |
| C3—O2  | 1.221 (2) | C13—O4  | 1.367 (2) |
| C3—C4  | 1.458 (3) | C13—C14 | 1.376 (3) |
| C4—C9  | 1.392 (3) | C14—C15 | 1.384 (3) |
| C4—C5  | 1.405 (3) | C14—H14 | 0.9300    |
| C5—C6  | 1.362 (3) | C15—H15 | 0.9300    |

| С5—Н5                    | 0.9300                   | C16—O3                     | 1.432 (3)         |
|--------------------------|--------------------------|----------------------------|-------------------|
| C6—C7                    | 1.395 (3)                | C16—H16A                   | 0.9600            |
| С6—Н6                    | 0.9300                   | C16—H16B                   | 0.9600            |
| С7—ОЗ                    | 1.357 (2)                | C16—H16C                   | 0.9600            |
| С7—С8                    | 1.384 (3)                | O4—H4                      | 0.8200            |
| C8—C9                    | 1.386 (3)                | O5—H5A                     | 0.91 (3)          |
| С8—Н8                    | 0.9300                   | O5—H5B                     | 0.97 (5)          |
| 01—C1—C2                 | 113.81 (18)              | O1—C9—C4                   | 121.74 (17)       |
| O1—C1—H1A                | 108.8                    | C8—C9—C4                   | 121.99 (18)       |
| C2—C1—H1A                | 108.8                    | C11—C10—C15                | 118.12 (19)       |
| 01—C1—H1B                | 108.8                    | C11—C10—C2                 | 121 57 (19)       |
| C2-C1-H1B                | 108.8                    | $C_{15} = C_{10} = C_{2}$  | 120.30(19)        |
| HIA-CI-HIB               | 107.7                    | C10-C11-C12                | 120.20(12)        |
| C1 - C2 - C10            | 113.06(17)               | C10-C11-H11                | 119.1             |
| C1 - C2 - C3             | 109.50(17)               | C12_C11_H11                | 119.1             |
| $C_{10} - C_{2} - C_{3}$ | 109.50(17)<br>112.51(17) | $C_{12} = C_{11} = C_{11}$ | 119.1<br>120.0(2) |
| $C_{10} = C_{2} = C_{3}$ | 107.1                    | $C_{13} = C_{12} = C_{11}$ | 120.0 (2)         |
| $C_1 = C_2 = H_2$        | 107.1                    | $C_{13} - C_{12} - H_{12}$ | 120.0             |
| $C_{10} - C_{2} - H_{2}$ | 107.1                    | C11 - C12 - H12            | 120.0             |
| $C_3 = C_2 = H_2$        | 107.1                    | 04-013-014                 | 122.2 (2)         |
| 02 - C3 - C4             | 123.18 (19)              | 04-013-014                 | 118.25 (19)       |
| 02 - C3 - C2             | 120.41 (19)              | C12 - C13 - C14            | 119.57 (19)       |
| C4—C3—C2                 | 116.32 (18)              | C13                        | 119.8 (2)         |
| C9—C4—C5                 | 117.36 (18)              | C13—C14—H14                | 120.1             |
| C9—C4—C3                 | 120.86 (17)              | C15—C14—H14                | 120.1             |
| C5—C4—C3                 | 121.71 (18)              | C14—C15—C10                | 120.8 (2)         |
| C6—C5—C4                 | 121.66 (19)              | C14—C15—H15                | 119.6             |
| С6—С5—Н5                 | 119.2                    | C10-C15-H15                | 119.6             |
| C4—C5—H5                 | 119.2                    | O3—C16—H16A                | 109.5             |
| C5—C6—C7                 | 119.60 (19)              | O3-C16-H16B                | 109.5             |
| С5—С6—Н6                 | 120.2                    | H16A—C16—H16B              | 109.5             |
| С7—С6—Н6                 | 120.2                    | O3—C16—H16C                | 109.5             |
| O3—C7—C8                 | 124.17 (19)              | H16A—C16—H16C              | 109.5             |
| O3—C7—C6                 | 115.17 (18)              | H16B—C16—H16C              | 109.5             |
| C8—C7—C6                 | 120.66 (18)              | C9—O1—C1                   | 114.27 (15)       |
| С7—С8—С9                 | 118.69 (18)              | C7—O3—C16                  | 118.38 (18)       |
| С7—С8—Н8                 | 120.7                    | C13—O4—H4                  | 109.5             |
| С9—С8—Н8                 | 120.7                    | H5A—O5—H5B                 | 113 (3)           |
| 01—C9—C8                 | 116.26 (17)              |                            |                   |
| O1—C1—C2—C10             | -179.23 (17)             | C5—C4—C9—C8                | -2.2 (3)          |
| O1—C1—C2—C3              | -52.9 (2)                | C3—C4—C9—C8                | 174.76 (19)       |
| C1—C2—C3—O2              | -158.3 (2)               | C1—C2—C10—C11              | -115.6 (2)        |
| C10—C2—C3—O2             | -31.6 (3)                | C3—C2—C10—C11              | 119.7 (2)         |
| C1—C2—C3—C4              | 25.1 (3)                 | C1—C2—C10—C15              | 65.6 (3)          |
| C10—C2—C3—C4             | 151.69 (18)              | C3—C2—C10—C15              | -59.1 (3)         |
| O2—C3—C4—C9              | -174.3 (2)               | C15—C10—C11—C12            | 1.2 (3)           |
| C2—C3—C4—C9              | 2.3 (3)                  | C2-C10-C11-C12             | -177.6 (2)        |
| 02-C3-C4-C5              | 2.6 (3)                  | C10-C11-C12-C13            | -0.6 (3)          |
| C2—C3—C4—C5              | 179.13 (18)              | C11—C12—C13—O4             | 178.0 (2)         |
|                          | × /                      | -                          | · · ·             |

# supplementary materials

| C9—C4—C5—C6 | 1.7 (3)      | C11—C12—C13—C14 | -0.6 (3)     |
|-------------|--------------|-----------------|--------------|
| C3—C4—C5—C6 | -175.30 (19) | O4—C13—C14—C15  | -177.44 (19) |
| C4—C5—C6—C7 | -0.1 (3)     | C12—C13—C14—C15 | 1.3 (3)      |
| C5—C6—C7—O3 | 179.76 (18)  | C13-C14-C15-C10 | -0.7 (3)     |
| C5—C6—C7—C8 | -0.9 (3)     | C11-C10-C15-C14 | -0.5 (3)     |
| O3—C7—C8—C9 | 179.62 (19)  | C2-C10-C15-C14  | 178.31 (19)  |
| C6—C7—C8—C9 | 0.4 (3)      | C8—C9—O1—C1     | 157.45 (19)  |
| C7—C8—C9—O1 | -179.64 (19) | C4—C9—O1—C1     | -23.4 (3)    |
| C7—C8—C9—C4 | 1.2 (3)      | C2-C1-O1-C9     | 53.4 (3)     |
| C5—C4—C9—O1 | 178.69 (18)  | C8—C7—O3—C16    | 0.3 (3)      |
| C3—C4—C9—O1 | -4.3 (3)     | C6—C7—O3—C16    | 179.6 (2)    |

# Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C10–C15 rings, respectively.

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------|-------------|--------------|--------------|------------|
| O4—H4…O5                   | 0.82        | 1.78         | 2.585 (2)    | 167.       |
| O5—H5A···O2 <sup>i</sup>   | 0.91 (3)    | 1.86 (3)     | 2.742 (3)    | 163 (3)    |
| O5—H5B···O4 <sup>ii</sup>  | 0.97 (5)    | 1.78 (5)     | 2.734 (3)    | 168 (4)    |
| C8—H8····O5 <sup>iii</sup> | 0.93        | 2.55         | 3.397 (3)    | 152.       |
| C2—H2···Cg1 <sup>iv</sup>  | 0.98        | 2.86         | 3.745 (3)    | 151        |
| C6—H6···Cg2 <sup>v</sup>   | 0.93        | 2.97         | 3.748 (3)    | 142        |
|                            | 1 (2 (11))  |              |              |            |

Symmetry codes: (i) x+1, y, z; (ii) x, -y+3/2, z-1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x, y+5/2, -z+1/2; (v) x-1, y, z.



Fig. 1



